

MATEMÁTICAS

1° Y 2° BACHILLERATO
Derivadas

www.tipsacademy.es

DERIVADA DE UNA FUNCIÓN EN UN PUNTO

DEFINICIÓN

Llamaremos **derivada de una función y = f(x) en el punto x = a** a la tasa de variación instantánea de dicha función en el punto a, y se designa por f'(a):

SIGNIFICADO

La derivada de la función y = f(x) en el punto x = a es **la pendiente de la recta tangente a la curva y = f(x) en el punto x = a**Por tanto la ecuación de la recta tangente a una curva en el punto

Por tanto la ecuación de la recta tangente a una curva en el punto

$$x = a : y - f(a) = f'(a) (x - a)$$

APLICACIONES

- Si f'(a) > 0 La función es creciente en el punto x = a
- Si f'(a) < 0 La función es decreciente en el punto x = a
- Si hay un máximo o mínimo relativo en x = a f'(a) = 0

FUNCIÓN DERIVADA DE OTRA

Se llama **función derivada de f** (o simplemente **derivada de f**) a una función f que asocia a cada abscisa, x, la derivada de f en ese punto, f (x), es decir, la pendiente de la curva y = f(x) en ese punto. A la derivada de f la llamaremos f(x)

- REGLAS PARA OBTENER LAS DERIVADAS DE ALGUNAS FUNCIONES

OPERACIONES CON DERIVADAS

- Multiplicación por un número: Cuando un número multiplica a una función, en la derivada ese número sigue multiplicando a la derivada: y= 3x y'= 3
- División entre un número: Cuando un número divide a una función, en la derivada ese número sigue dividiendo a la derivada: y= x/3 y'= 1/3
- Suma y resta de funciones es lo mismo la suma y resta de sus derivadas: $y=3x^2+2x+4$, y'=6x+2
- Producto de dos funciones f(x) y g(x): [f(x).g(x)]'=f'(x).g(x)+f(x).g'(x)
- División de dos funciones f(x) y g(x): $[f(x)/g(x)]' = \frac{f'(x).g(x) f(x).g'(x)}{g(x)^2}$

REGLAS DE DERIVACIÓN

FUNCIÓN	DERIVADA	FUNCIÓN	DERIVADA
y = k	y´ = 0		
y = x	y = 1		
y = x ⁿ	$y' = n.x^{n-1}$	y = f '(x)	$y' = n.f(x)^{n-1}.f'(x)$
$y = \sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$	$y = \sqrt{f(x)}$	$y' = \frac{f'(x)}{2\sqrt{f(x)}}$
$y = \sqrt[r]{x}$	$y' = \frac{1}{n^{n}\sqrt{x^{n-1}}}$	$y = n^{\sqrt{f(x)}}$	$y' = \frac{f'(x)}{n^n \sqrt{f^{n-1}(x)}}$
$y = a^x$	y = a ^x . Ln a	$y = a^{f(x)}$	y´ = a ^{f(x)} .Ln a.f´(x)
y = e ^x	y = e ^x	$y = e^{f(x)}$	$y' = e^{f(x)}.f'(x)$
y = log a x	$y' = \frac{1}{x.Lna}$	$y = \log_{\alpha} f(x)$	$y' = \frac{f'(x)}{f(x).Lna}$
y = Ln x	$y' = \frac{1}{x}$	y = Ln f(x)	$y' = \begin{cases} f'(x) \\ f(x) \end{cases}$
y = sen x	y' = cos x	y = sen f(x)	$y' = \cos f(x).f'(x)$
y = cos x	y´=-sen x	$y = \cos f(x)$	y´ = - sen f(x).f´(x)
y = tag x	$y' = 1 + tag^2x = \frac{1}{\cos^2 x}$	y = tag f(x)	$y' = \frac{f'(x)}{\cos^2 f(x)} =$ [1 + tag ² f(x)].f'(x)
y = arcsen x	$y' = \frac{1}{1 + x^2}$	y = arcsen f(x)	$y' = \frac{f'(x)}{1 + f^2(x)}$
y = arccos x	$y' = \frac{1}{1 + x^2}$	y = arccos f(x)	$y' = \frac{f'(x)}{1 + f^2(x)}$
y = arctag x	$y' = \frac{1}{1+x}$	y = arctag f(x)	$y' = \frac{f'(x)}{1 + f^2(x)}$

EJEMPLOS DE CADA TIPO

Potencias:

Potencias negativas:

gativas: $y = (3x^2 + 2x)^3$ $y' = 3(3x^2 + 2x)^2 (6x + 2)$ $y = 2/x^2 = 2x^{-2}$ $y' = -4x^{-5} = -4/x^5$ $y = \sqrt{x^2 + 7x} = (x^2 + 7x)^{1/2}$ $y' = 1/2(x^2 + 7x)^{-5/2}(2x + 7) = (2x + 7)/(x^2 + 7x)^{5/2}$ es: $y = 3^{x^2 + 5} \text{ Ln3}(2x)$ Raíces:

Exponenciales: $y=3 \xrightarrow{x_2+5}$ $y'=3 \xrightarrow{x_2+5}$ Ln3 (2x) Exponenciales número e: $y=e^{x_2+5}$ $y'=e^{x_2+5}$ (2x) Logarítmicas: $y=\log_3(x^3+1)$ $y'=3x^2/(x^3+1)$ Ln3 Logaritmo Neperiano: $y=\ln(4x^2+7x)$ $y'=(8x+7)/(4x^2+7x)$ Seno $y=4 \sin(2x^2+5x)$ $y'=4 \cos(2x^2+5x)(4x+5)$

y= $4 \cos(2x^2 + 5x)$ $y'= -4 \sin(2x^2 + 5x) (4x + 5)$ y= tg(3x + 2) $y'= 3/\cos^2(3x + 2)$ $y'= 3[1 + tg^2(3x + 2)]$ $y'= 3 \sec^2(3x + 2)$ Coseno

Tangente

Producto de funciones: $y=e^{x}(x^{2}+1)$ $y'=e^{x}(x^{2}+1)+e^{x}2x$ División de funciones: $y=e^{x}/(x^{2}+1)$ $y'=[e^{x}(x^{2}+1)-e^{x}2x]/(x^{2}+1)^{2}$ Potencia de una función: $y=sen^{2}(x^{2}+1)$ $y'=2sen(x^{2}+1)cos(x^{2}+1)2x$

CASO ESPECIAL

Derivada de una función elevada a otra:

$$y= f(x)^{g(x)}$$
 $y'= g(x) f(x)^{g(x)-1} f'(x) + f(x)^{g(x)} Ln f(x) g'(x)$

Ejemplo:

$$y = (x^2 + 3x)^{sen(3x)} y' = sen(3x) (x^2 + 3x)^{sen(3x)-1} (2x + 3) + (x^2 + 3x)^{sen(3x)} Ln(x^2 + 3x) 3 cos(3x)$$

