

QUÍMICA

2° BACHILLERATO
Cuadernillo intensivo selectividad

www.tipsacademy.es

ESTRUCTURA DE LA MATERIA Y TABLA PERIÓDICA

2018-Modelo Pregunta B1.- Considere los cuatro elementos con la siguiente configuración electrónica en los niveles de energía más externos: A: $2s^2 2p^4$; B: $2s^2$; C: $3s^2 3p^2$; D: $3s^2 3p^5$.

- a) Identifique los cuatro elementos con nombre y símbolo. Indique grupo y período al que pertenecen. (Oxígeno G:16 P:2, Berilio G:2 P:2, Silicio G:14 P:3, Cloro G:17 P:3)
 - b) Indique un catión y un anión que sean isoelectrónicos con A²⁻. (Na⁺, Mg²⁺, F⁻, N³⁻)
- c) Justifique si la segunda energía de ionización para el elemento A es superior o inferior a la primera.
- d) En el espectro del átomo hidrógeno hay una línea situada a 434 nm. Calcule $\triangle E$, en kJ·mol⁻¹, para la transición asociada a esa línea. ($\triangle E$ = 276kJ /mol)

Datos. $h = 6.62 \times 10^{-34} \text{ J} \cdot \text{s}$; $NA = 6.023 \times 10^{23}$; $c = 3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1}$.

2017-Septiembre-coincidentes Pregunta A1.- Para los tres elementos con números atómicos Z = 6, Z = 11 y Z = 14:

- a) Escriba sus configuraciones electrónicas e identifíquelos con su nombre y su símbolo. (Z=6 (carbono)1s² 2s² 2p². Z=11 (sodio) 1s² 2s² 2p6 3s1. Z=14 (silicio) 1s² 2s² 2p6 3s² 3p²)
 - b) Determine el grupo y el período de cada elemento. (C G:14 P:2, Na G:1 P:3, Si G:14 P:3)
- c) Para el elemento con Z = 14 detalle los posibles números cuánticos de su último electrón. (3,1,0,+1/2)
- d) Justifique cómo varía en la tabla periódica el radio atómico y ordene los elementos del enunciado en orden decreciente de radio atómico. (C < Si < Na)

2017-Septiembre Pregunta B1. Dados los siguientes elementos: A (Z = 11), B (Z = 17) y C (Z = 20).

- a) Para cada uno de ellos, escriba su configuración electrónica e indique el nombre y el símbolo del elemento que está situado en el mismo grupo y en el periodo anterior. (1s² 2s² 2p6 3s¹, es Na, G:1, P:2, Li; 1s² 2s² 2p6 3s² 3p5, es Cl, G:17, P:3, F; 1s² 2s² 2p6 3s² 3p6 4s², es Ca, G:2, P:4, Mg)
 - b) Justifique qué ion, B^- o C^{2+} , tiene menor radio. (Mg^{2+})
- c) Indique razonadamente cuántos electrones con m = 0 (número cuántico magnético) tiene el elemento A. **(7 electrones)**
- d) ¿Cuál de los elementos dados necesita más energía para convertirse en un ion monopositivo? Razone su respuesta. (Cloro)

2017-Junio-coincidentes Pregunta A1.- Considere los elementos X (Z = 12), Y (Z = 13) y Z (Z = 16).

- a) Escriba sus configuraciones electrónicas e identifique los tres elementos (nombre y símbolo). (1s² 2s² 2p6 3s²; 1s² 2s² 2p6 3s² 3p¹; 1s² 2s² 2p6 3s² 3p⁴)
- b) Formule y razone cuál es el ión más estable para cada uno de estos elementos. ¿Cuáles son isoelectrónicos? ($Mg^{+2}yAl^{+3};S^{-2}$)
 - c) Razone cuál de los iones del apartado b presenta el menor radio. (Al+3)

2017-Junio Pregunta A1.- Responda justificadamente las siguientes preguntas:

- a) Para el elemento con Z=7 indique cuántos electrones tiene con número cuántico m=0 y detalle en qué orbitales. (5 electrones)
- b) Para cada uno de los elementos X (Z = 17), Y (Z = 19) y Z (Z = 35) indique cuál es su ión más estable y explique cuál de esos iones tiene menor radio. ($X^T Y^+ Z^-$; Y^+ menor radio)

2016-Septiembre Pregunta A1.- Los números atómicos de los elementos A, B y C son Z, Z⁺¹ y Z⁺², respectivamente. Si B es el gas noble que se encuentra en el tercer período, conteste razonadamente a las siguientes cuestiones:

- a) Identifique dichos elementos con el nombre y el símbolo. (Ar, Cl, K)
- b) Escriba sus configuraciones electrónicas e indique en qué grupo y período se encuentran A y C. (Cl) 1s² 2s² 2p6 3s² 3p5 G:17 P:3; (Ar) 1s² 2s² 2p6 3s² 3p6; (K) 1s² 2s² 2p6 3s² 3p5 4s1 G:1 P:4)
- c) ¿Cuál es el elemento más electronegativo de los tres y cuál es el ión más estable que forma cada uno de ellos? (Cloro; Cl⁻ K⁺)

2016-Junio Pregunta A1.- Conteste a cada una de las siguientes preguntas, justificando su respuesta.

- a) Determine para el átomo de hidrógeno según el modelo de Bohr qué transición electrónica requiere una mayor absorción de energía, la de n=2 a n=3, la de n=5 a n=6 o la de n=9 a n=2. (Salto de 2 a 3)
- b) Indique el grupo al que pertenece el elemento X si la especie X^{2-} tiene 8 electrones externos. (G:16)
 - c) En el átomo Z = 25 ¿es posible que exista un electrón definido como (3, 1, 0, -1/2)? (Si)

d) En el sistema periódico los elementos Z = 25 y Z = 30 se encuentran en el mismo período. Explique cuál de ellos tiene un proceso de ionización más endotérmico. (**Z=30 tiene mayor proceso de ionización**)

Pregunta B1.- Para los elementos A (Z = 6), B (Z = 10), C (Z = 16), D (Z = 20) y E (Z = 26), conteste razonadamente:

- a) ¿Cuál de ellos presenta electrones desapareados? (A, C, E)
- b) De los elementos B, C y D, ¿cuál da lugar a un ion estable con menor radio? (D)
- c) ¿Es la energía de ionización de C mayor que la de D? (Si)

2016-Modelo Pregunta A1.- Considere los siguientes elementos: A es el alcalinotérreo del quinto período, B es el halógeno del cuarto período, C es el elemento de número atómico 33, D es el kriptón y E es el elemento cuya configuración electrónica de la capa de valencia es 5s¹.

- a) Indique el grupo al que pertenece cada uno de los átomos. (A G:2, B G:17, C G:15, D G:18, E G:1)
 - b) Justifique cuántos electrones con m = -1 posee el elemento E. (8 e⁻)
 - c) Razone cuáles son los iones más estables que forman los elementos B y E. (B-, E+)
- d) Indique razonadamente si el radio del ion A^{2+} es mayor que el del ion B^- (El radio de A^{2+} es menor)

Pregunta B1.- En la tabla adjunta se recogen las dos primeras energías de ionización (E.I., en kJ·mol⁻¹) y las electronegatividades (EN) de tres elementos pertenecientes al tercer período: cloro, magnesio y sodio.

Elemento	1er E.I.	2ª E.I.	EN
X	495,8	4562	0,93
Y	737,7	1451	1,31
Z	1251	2298	3,16

- a) Defina los conceptos de energía de ionización y de electronegatividad.
- b) Escriba las configuraciones electrónicas de los tres elementos mencionados en el enunciado. (Cl (Z=17): 1s² 2s² 2p6 3s² 3p5 Mg (Z=12): 1s² 2s² 2p6 3s² Na (Z=11): 1s² 2s² 2p6 3s¹)
- c) Utilizando las energías de ionización, justifique cuáles son cada uno de los elementos X, Y y Z. (X=Na, Y=Mg y Z=CI)
 - d) Justifique los valores de las electronegatividades de la tabla.

2015-Septiembre Pregunta A1.- Un elemento tiene como número atómico Z = 26.

- a) Escriba su configuración electrónica. (1s² 2s² 2p6 3s² 3p6 4s² 3d6)
- b) Indique el grupo y el período al que pertenece. (G:8, P:4)
- c) Se sabe que una muestra de 7,00 g de este elemento puro contiene $7,55 \times 10^{22}$ átomos de dicho elemento. Calcule su masa atómica. **(55,8u)**
 - d) Justifique el enlace que presenta este elemento como sustancia pura.

Dato: $N_A = 6,022 \times 10^{25} \text{ mol}^{-1}$.

ENLACE QUÍMICO

2017-Junio-coincidentes Pregunta B1.- Considere las sustancias F₂, HCl, Ni y KBr.

- a) Indique el tipo de enlace que presenta cada una de ellas. (F₂: enlace covalente HCl: enlace covalente Ni: enlace metálico KBr: enlace iónico)
- b) Justifique si conducen la corriente eléctrica y en qué condiciones. (Metálico en cualquier estado, iónico si esta fundido y covalente no)
 - c) Escriba las estructuras de Lewis de aquellas que sean covalentes.
- d) Justifique si cada una de las sustancias del enunciado es soluble en agua o no. (Lo son KBr y HCl al ser sustancias polares)

2017-Junio Pregunta A1.- Responda justificadamente las siguientes preguntas:

a) Identifique el compuesto binario formado por el hidrógeno y el elemento Z = 7. Razone si es polar y nombre todas las posibles interacciones intermoleculares que puede presentar. (**Puentes de H y Fuerzas de Van der Waals**)

Pregunta B1.- Conteste razonadamente las preguntas referidas a las sustancias: sulfuro de hidrógeno, diamante, etilamina, yodo molecular, platino y cloruro de calcio.

- a) Cuál/cuáles presentan enlace de hidrógeno. (Etilamina)
- b) Cuál/cuáles son conductoras de la electricidad y en qué condiciones lo son. (Pt en estado sólido y CaCl₂ si está fundido)
 - c) ¿Hay alguna insoluble en agua? (Diamante, Pt, I2)

5

d) ¿Es la temperatura de fusión del cloruro de calcio mayor o menor que la del yodo molecular? (Es mayor debido a fuerzas intermoleculares)

2016-Septiembre Pregunta A1.- Los números atómicos de los elementos A, B y C son Z, Z^{+1} y Z^{+2} , respectivamente. Si B es el gas noble que se encuentra en el tercer período, conteste razonadamente a las siguientes cuestiones:

a) ¿Cuáles son los estados de agregación de A_2 y C en condiciones estándar? (A_2 es gas y C es un sólido)

2016-Junio Pregunta B1.- Para los elementos A (Z = 6), B (Z = 10), C (Z = 16), D (Z = 20) y E (Z = 26), conteste razonadamente:

a) El elemento A, al unirse con hidrógeno ¿forma un compuesto binario que presenta enlace de hidrógeno? (No forma puentes de H)

2015-Septiembre Pregunta B1.- Indique si las siguientes afirmaciones son verdaderas o falsas, justificando su respuesta:

- a) En la molécula de etino, los dos átomos de carbono comparten entre sí dos pares de electrones. (F)
 - b) La entalpía de vaporización del agua es mayor que la del sulfuro de hidrógeno. (V)
 - c) El cloruro de sodio en disolución acuosa conduce la electricidad. (V)
 - d) El carbono puro en forma de diamante presenta enlace metálico. (F)

2015-Junio-Coincidentes Pregunta A1.- Considere los átomos X e Y, cuyas configuraciones electrónicas fundamentales terminan en $3s^1$ y $4p^4$, respectivamente:

a) Si estos dos elementos se combinaran entre sí, determine la fórmula del compuesto formado y justifique el tipo de enlace que presentaría. (Iónico)

2015-Modelo Pregunta A1.- Para las sustancias HF, Fe, KF y BF_z, justifique:

a) El tipo de enlace presente en cada una de ellas. (HF y BF_3 enlace covalente, Fe enlace metálico KF enlace iónico)

- b) Qué sustancia tendrá menor punto de fusión. (BF₃)
- c) Cuál o cuáles conducen la electricidad en estado sólido, cuál o cuáles la conducen en estado fundido y cuál o cuáles no la conducen en ningún caso. (Fe conducirá en estado sólido y fundido, KF conducirá fundido y los compuestos covalentes no conducirán)
- d) La geometría de la molécula BF₃, a partir de la hibridación del átomo central. **(sp² Trigonal plana)**

2014-Junio-Coincidentes Pregunta B1.- Considere las moléculas OF₂, monóxido de carbono y metanol.

- a) Escriba sus estructuras de Lewis.
- b) Justifique su geometría. (OF₂: angular, CO: lineal, CH₃OH: tetra édrica)
- c) Razone si son o no polares. (OF₂: polar, CO: polar, CH₃OH: polar)
- d) Indique razonadamente para cuál de ellas se espera mayor punto de ebullición. (CH₃OH al tener puentes de H)

2014-Junio Pregunta A2.- Con los datos recogidos en la tabla adjunta, conteste razonadamente a las siguientes preguntas:

Sustancia	H ₂ O	HF	HCI	Cl ₂	
T _{eb} (°C)	100	20	-85	-34	

- a) ¿Por qué la temperatura de ebullición normal del HF es mayor que la del HCI? (**Puentes de H**)
- b) ¿Por qué la temperatura de ebullición normal del H₂O es mayor que la del Cl₂? **(Puentes de H)**
- c) ¿Por qué la temperatura de ebullición normal del HCl es menor que la del Cl_2 ? (la nube electrónica del Cl_2 es mucho mayor que la de HCl)
 - d) ¿Cuál de las sustancias de la tabla presentará mayor punto de fusión? (H_2O)

Pregunta A1.- Considere los elementos de números atómicos 3 y 18:

- a) Justifique qué tipo de enlace presentaría el posible compuesto formado por estos dos elementos. (No se formará compuesto)
- b) Justifique qué tipo de enlace presentaría el compuesto formado por los elementos con Z= 3 y Z=17. **(Iónico)**

2014-Modelo Pregunta B1.- Los átomos X, Y y Z corresponden a los tres primeros elementos consecutivos del grupo de los anfígenos. Se sabe que los hidruros que forman estos elementos tienen temperaturas de ebullición de 373, 213 y 232 K, respectivamente.

- a) Explique por qué la temperatura de ebullición del hidruro de X es mucho mayor que la de los otros dos. (**Puentes de H**)
- b) Explique por qué la temperatura de ebullición del hidruro de Y es menor que la del hidruro de Z. (En Se las fuerzas de dispersión son mayores que en S al tener mayor número de electrones)
 - c) Justifique la geometría molecular del hidruro del elemento X. (Angular)

2013-Septiembre Pregunta B1.- Justifique si son verdaderas o falsas las siguientes afirmaciones:

- a) Una molécula que tenga enlaces polares necesariamente es polar. (F)
- b) Un orbital híbrido s^2p^2 se obtiene por combinación de dos orbitales s y dos orbitales p. (F)
- c) Los compuestos iónicos en disolución acuosa son conductores de la electricidad. (V)
- d) La temperatura de ebullición del HCl es superior a la del HF. (F)

CINÉTICA QUÍMICA Y EQUILIBRIO QUÍMICO.

2017-Junio-coincidentes Pregunta A3.- A 28 C, una reacción del tipo $3 \text{ A(g)} + 2 \text{ B(g)} \rightarrow \text{C(g)}$ presenta la ley de velocidad: v = k[A]. Justifique si los siguientes enunciados son verdaderos o falsos.

- a) Se trata de una reacción elemental. (F)
- b) El reactivo A se consume a mayor velocidad que el reactivo B. (F)
- c) Las unidades de la constante cinética son $L^2 \cdot mol^{-2} \cdot s^{-1}$. (F)
- d) Un aumento de la temperatura no afecta la velocidad de la reacción. (F)

Pregunta A5.- La reacción de síntesis del CH_3OH en estado gaseoso es $CO + H_2 \rightleftarrows CH_3OH$. Se introducen en un reactor 1 mol de CO y 2 mol de H_2 , alcanzándose el equilibrio a 500 C y 250 atm cuando ha reaccionado el 20% del CO inicial. Determine, a partir de la reacción ajustada:

- a) La presión parcial de cada gas en el equilibrio y el volumen del reactor empleado. (P_{co} = 77 atm, P_{H2} = 154 atm, P_{H3OH} = 19 atm; V= 0.66L)
- b) El valor de Kp. ¿Coinciden los valores numéricos de Kp y Kc? Razone la respuesta. ($K_p=1,04 \cdot 10^{-5} \text{ atm}^{-2}$)

c) Cómo afecta a la concentración de metanol un aumento de volumen a temperatura constante. (Se desplaza hacia los reactivos)

Dato.
$$R = 0.082$$
 atm ·L·mol⁻¹·K⁻¹.

Pregunta B4.- A una disolución de K₂SO₄ se le añade otra de CaBr₂.

- a) Formule el equilibrio de precipitación resultante. ($Ca^{2+} + SO_4^{2-} \rightleftarrows CaSO_4$)
- b) Determine la solubilidad del CaSO₄ en mol·L⁻¹ y g·L⁻¹. (s= 0,952 g·L⁻¹)
- c) Justifique cómo afecta la adición de otro sulfato a la mezcla de disoluciones. (Se desplaza hacia los productos, aumenta el precipitado)
- d) Si a una disolución que contiene iones Ca^{2+} y Ba^{2+} en igual concentración se le hacen adiciones sucesivas de la disolución de K_2SO_4 , justifique qué sal precipitará primero. (**Ba**²⁺ **al ser su K**_c **más pequeña**)

Datos. $Ks(CaSO_4) = 5 \times 10^{-5}$; $Ks(BaSO_4) = 1,1 \times 10^{-10}$. Masas atómicas: O = 16; S = 32; Ca = 40.

2017-Junio Pregunta A4.– En un matraz de 2 L se introducen 0,5 mol de A2 y 1,0 mol de B2 y se lleva a 250 C. Se produce la reacción $A_2(g) + 2B_2(g) \rightleftarrows A_2B_4(g)$, reaccionando el 60% del reactivo A_2 .

- a) Sabiendo que para esta reacción $\Delta H > 0$, proponga justificadamente dos formas diferentes de aumentar su rendimiento sin añadir más cantidad de reactivos. (**Aumentando presión y temperatura**)
 - b) Calcule Kp. **(Kp= 2,04 ·10⁻² atm⁻²)**

Dato. R = 0.082 atm ·L·mol⁻¹·K⁻¹.

Pregunta B2.- Se ha encontrado que la velocidad de la reacción $A(g) + 2 B(g) \rightarrow C(g)$ sólo depende de la temperatura y de la concentración de A, de manera que si ésta se triplica, también se triplica la velocidad de reacción.

- a) Indique los órdenes de reacción parciales respecto de A y B, así como el orden total. (A es 1, B es 0 y el orden total es 1)
 - b) Escriba la ley de velocidad. (v=k·[A])
- c) Justifique si para el reactivo A cambia más deprisa la concentración que para el reactivo B. (Cambia más deprisa a de B por estequiometría)

d) Explique cómo afecta a la velocidad de reacción una disminución de volumen a temperatura constante. (Aumentará la velocidad de la reacción)

2016-Septiembre Pregunta A2.- Considere el equilibrio: $X(g) + 2 Y(g) \rightleftarrows Z(g)$ con $\Delta H < 0$. Si la presión disminuye, la temperatura aumenta y se añade un catalizador, justifique si los siguientes cambios son verdaderos o falsos.

- a) La velocidad de la reacción aumenta. (F)
- b) La constante de equilibrio aumenta. (F)
- c) La energía de activación disminuye. (F)
- d) La concentración de Z en el equilibrio disminuye. (V)

Pregunta A3.- La solubilidad del hidróxido de cobre(II) en agua es 9.75×10^{-6} g · L⁻¹.

- a) Escriba el equilibrio de solubilidad del hidróxido de cobre(II) en agua. ($Cu(OH)_2 \iff Cu^{2+} + 2$ OH-)
 - b) Calcule su solubilidad molar. (s= 10⁻⁷ molL⁻¹)
 - c) Calcule el producto de solubilidad del hidróxido de cobre(II). (ks= 4 ·10²¹ mol³L-³)
- d) Justifique cómo varía la solubilidad del hidróxido de cobre(II) si se añade una disolución de hidróxido de sodio. (Se desplaza hacia los reactivos y disminuye la solubilidad)

Datos. Masas atómicas: H = 1,0; O = 16,0; Cu = 63,5.

Pregunta B2.- La reacción A+2 $B\to C$ que transcurre en fase gaseosa es una reacción elemental.

- a) Formule la expresión de la ley de velocidad. (v=k[A][B]²)
- b) ¿Cuál es el orden de reacción respecto a B? ¿Cuál es el orden global? (El orden de B es 2 y el total es 3)
 - c) Deduzca las unidades de la constante cinética. (L² mol-² ·s-¹)
- d) Justifique cómo afecta a la velocidad de reacción un aumento de volumen a temperatura constante. (**Disminuye la velocidad**)

Pregunta B4.– El yoduro de hidrógeno se descompone de acuerdo con la ecuación: 2 HI(g) \rightleftarrows H₂(g) + I₂(g), siendo Kc = 0,0156 a 400 °C. Se introducen 0,6 mol de HI en un matraz de 1 L de volumen y se calientan hasta 400 °C, dejando que el sistema alcance el equilibrio. Calcule:

- a) La concentración de cada especie en el equilibrio. ([HI]= 0,48 M [H2]=[I2]= 0,06 M)
- b) El valor de Kp. (**kp= kc**)
- c) La presión total en el equilibrio. (P= 33.1 atm)

2016-Junio Pregunta B3.- Considere la reacción $A + B \rightarrow C$ e indique si son verdaderas o falsas las siguientes afirmaciones, justificando su respuesta:

- a) Un aumento de la temperatura siempre aumenta la velocidad de la reacción porque se reduce la energía de activación. (F)
 - b) Un aumento de la concentración de A siempre aumenta la velocidad de la reacción. (F)
 - c) Las unidades de la velocidad de la reacción dependen del orden total de la misma. (F)
 - d) El orden total de reacción puede ser distinto de dos. (V)

Pregunta B5.- En un reactor de 5 L se introducen 0,2 mol de HI y se calientan hasta 720 K, estableciéndose el equilibrio: $2 \text{ HI}(g) \rightleftarrows \text{H}_2(g)$, con Kc = 0,02. La reacción directa es exotérmica.

- a) Calcule las concentraciones de todos los gases en el equilibrio. ([H2]=[12]= 0,0044 M [H1]= 0,0312 M)
- b) Calcule las presiones parciales de todos los gases en el equilibrio y el valor de Kp a 720 K. (P_{HI} = 1.84 atm, P_{H2} = P_{12} = 0.26 atm)
- c) ¿Cómo se modificaría el equilibrio al disminuir la temperatura? ¿Y si se duplicara el volumen del reactor? (Hacia los reactivos, no lo modifica)

Dato. R = $0.082 \text{ atm } \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

2016-Modelo Pregunta A2.- En un reactor de 1 L se establece el siguiente equilibrio entre especies gaseosas: $NO_2 + SO_2 \rightleftarrows NO + SO_3$. Si se mezclan 1 mol de NO_2 y 3 mol de SO_2 , al llegar al equilibrio se forman 0,4 mol de SO_3 y la presión es de 10 atm.

a) Calcule la cantidad (en moles) de cada gas y sus presiones parciales en el equilibrio. ($n_{NO}=n_{SO3}=0,4$ $n_{NO2}=0,6$ $n_{SO2}=2,6$; $P_{NO}=P_{SO3}=1$ atm $P_{NO2}=1.2$ atm $P_{SO2}=6.5$ atm)

- b) Determine los valores de Kp y Kc para esta reacción. (**Kp = Kc = 0.103**)
- c) Justifique cómo se modifica el valor de Kp si la presión total aumenta. ¿Y el equilibrio? (No hay variación)

Pregunta B3.- En un recipiente A se introduce 1 mol de $Ca(OH)_2$ sólido y en otro recipiente B 1 mol de $Ba(OH)_2$ sólido, y se añade la misma cantidad de agua a cada uno de los recipientes.

- a) Formule los equilibrios heterogéneos de disociación de estas sales y escriba las expresiones para sus constantes del producto de solubilidad en función de las solubilidades correspondientes. (Ca(OH)₂ ≠ Ca²⁺ + 2 OH⁻Ks= [Ca²⁺] ·[OH⁻]²=4s³ Ba(OH)₂ ≠ Ba²⁺ + 2OH⁻Ks= [Ba²⁺] ·[OH⁻]² = 4s³)
- b) Justifique, sin hacer cálculos, en qué disolución la concentración molar del catión es mayor. (Como Ks (Ca(OH)₂) < Ks (Ba(OH)₂) \rightarrow [Ca²⁺] < [Ba²⁺])
- c) Justifique cómo se modifica la concentración de Ca²+ en disolución si al recipiente A se le añade hidróxido de sodio sólido. (\$\pm\$ solubilidad y [Ca²+])
- d) Justifique si se favorece la solubilidad del Ba(OH)₂ si al recipiente B se le añade ácido clorhídrico. **(Aumenta la solubilidad)**

Datos. Productos de solubilidad: $Ca(OH)_2 = 10^{-5}$; $Ba(OH)_2 = 10^{-2}$.

2015-Septiembre Pregunta A2.- Indique si son verdaderas o falsas las siguientes afirmaciones, justificando su respuesta:

- a) Cuando aumenta la temperatura en un equilibrio exotérmico, la constante de velocidad de la reacción directa disminuye. (F)
 - b) En una reacción entre gases del tipo A + $2B \rightleftharpoons 2C$, los valores de Kc y Kp son iguales. (F)
- c) En una reacción entre gases del tipo A + 2B

 2C + D, un aumento en la presión del recipiente a temperatura constante no modifica la cantidad de reactivos y productos presentes en el equilibrio.

 (V)

Pregunta B3.– La reacción entre gases $2A + B \rightleftarrows 3C$ tiene $\Delta H = -120 \text{ kJ} \cdot \text{mol}^{-1}$, y para la reacción inversa Ea = $180 \text{ kJ} \cdot \text{mol}^{-1}$.

a) Utilizando un diagrama energético de la reacción, calcule Ea para la reacción directa. **(Ea=60 kJ·mol**¹¹)

- b) Justifique si un aumento de temperatura tendrá mayor efecto sobre la constante de velocidad de la reacción directa o de la inversa. (Inversa)
- c) Justifique qué efecto tendrá un aumento de temperatura sobre las cantidades de reactivos y productos en el equilibrio. (**Disminuyen los productos y aumentan los reactivos**)

ÁCIDO - BASE

2017-Junio-coincidentes Pregunta B3.- Razone si son verdaderas o falsas las siguientes afirmaciones:

- a) El pH de la disolución resultante de neutralizar ácido nítrico con amoniaco es igual a 7. (F)
- b) Para las bases A (Kb = $1,1\times10^{-8}$) y B (Kb = $1,8\times10^{-5}$), el ácido conjugado de B será más fuerte que el de A. (**F**)
 - c) El pH de una disolución de un ác.fuerte varía con la adición de agua.(V)
- d) Si se añade 1 L de agua a 1 L de una disolución de HCl 0,2 M, el pH de la disolución resultante es 1. (V)

2017-Junio Pregunta A2.- Calcule el pOH de las siguientes disoluciones 0,20 M.

- a) CH3COOH; pKa = 5. (pOH = 11)
- b) Ca(OH)2. **(pOH = 0.4)**
- c) NH3; pKb = 5. (pOH = 2.85)

Pregunta B4.- Se preparan 250 mL de una disolución de HCl a partir de 2 mL de un ácido clorhídrico comercial de 36,2% de riqueza en masa y densidad 1,18 g·mL⁻¹. Calcule:

- a) La concentración de la disolución preparada y su pH. ([HCl]= 0,0936 M, pH= 1.03)
- b) El pH de la disolución resultante de mezclar 75 mL de la disolución final de HCl con 75 mL de una disolución de NaOH 0,1 M. (pH= 11.5)
- c) El volumen de disolución de NaOH 0,1 M necesario para neutralizar 10 mL de la disolución preparada de HCl. (V= 9.36 ml)

Datos. Masas atómicas: H = 1,0; Cl = 35,5.

2016-Septiembre Pregunta A4.- El ácido benzoico tiene un pKa = 4,2.

- a) Calcule la concentración que debe tener una disolución de este ácido para que el pH sea 2,3. ([ác. Benzoico]= 0.42M)
- b) Determine la masa de $Ba(OH)_2$ necesaria para neutralizar 25 mL de la disolución del apartado a). (m= 0.9 g)
- c) Justifique si la disolución resultante del apartado b) presenta pH ácido, básico o neutro. (Básico)

Datos. Masas atómicas: H = 1,0; O = 16,0; Ba = 137,3.

2016-Junio Pregunta A5.- Se tienen dos disoluciones acuosas (1) y (2) del mismo ácido monoprótico. La disolución (1) tiene un pH de 3,92 y un grado de disociación del 2%. La disolución (2) tiene una concentración 0,05 M. Calcule:

- a) La constante de disociación del ácido. (ka= 2,45 ·10-6)
- b) El pH de la disolución (2). (pH= 3.46)
- c) El pH de la disolución resultante de mezclar 10 mL de (1) y 10 mL de (2). (pH= 3.58)

Pregunta B2.- Se tienen disoluciones de las siguientes sustancias HNO₃, HNO₂, CH₃NH₂ y NaNO₃, en distintas concentraciones. Conteste razonadamente:

- a) ¿Cuál o cuáles pueden tener pOH = 5? (CH₃NH₂)
- b) ¿Cuál o cuáles pueden presentar una concentración de H₃O⁺= 10⁻⁴ M? (HNO₃, HNO₂)
- c) ¿Con cuál de ellas se puede mezclar la disolución de CH₃NH₂ para que la disolución resultante sea siempre básica, independientemente de la proporción en la que se mezclen? (NaNO₃)
- d) ¿Pueden prepararse disoluciones independientes de HNO₃ y HNO₂ que tengan el mismo pH? **(Sí)**

Datos. Ka $(HNO_2) = 4.5 \times 10^{-4}$; Kb $(CH_3NH_2) = 3.7 \times 10^{-4}$.

2016-Modelo Pregunta A3.- Un vinagre que contiene un 5 % en masa de ácido acético tiene un pH de 2,4. Calcule:

a) La concentración molar inicial de la disolución del ácido. ([ácido acético]= 0,89 M)

b) La densidad del vinagre. (d= 1068 g/L)

Datos. Ka (CH₃COOH) = 1,8 \times 10⁻⁵. Masas atómicas: H = 1, C = 12, O = 16.

Pregunta B4.- El color de las flores de la hortensia (hydrangea) depende, entre otros factores, del pH del suelo en el que se encuentran, de forma que para valores de pH entre 4,5 y 6,5 las flores son azules o rosas, mientras que a pH superior a 8 las flores son blancas. Dadas las siguientes disoluciones acuosas: $Ca(NO_3)_2$, $(NH_4)_2SO_4$, NaCIO y NH_3 , indique razonadamente:

- a) ¿Qué disolución/es añadiría al suelo si quisiera obtener hortensias de color blanco? (NH₃, NaClO)
- b) ¿De qué color serán las hortensias si añadiese al suelo una disolución de $(NH_4)_2SO_4$? (Azul o rosa)

Datos. Ka (HClO) = 3.1×10^{-8} ; Kb (NH_x) = 1.8×10^{-5} .

2015-Septiembre Pregunta A4.- Un ácido monoprótico presenta una constante de acidez $Ka = 2.5 \times 10^{-5}$.

- a) Calcule la concentración inicial de este ácido necesaria para obtener una disolución con pH = pKa 2. (Co= 0,25 M)
- b) Calcule la masa de KOH necesaria para neutralizar 100 mL de la disolución del ácido del apartado a). (m= 1,4 g KOH)
- c) Razone si el pH resultante de la neutralización del apartado b) es ácido, básico o neutro. **(Básico)**

Datos. Masas atómicas: H = 1,0; O = 16,0; K = 39,1.

Pregunta B2. En tres matraces sin etiquetar se dispone de disoluciones de la misma concentración de cloruro de sodio, hidróxido de sodio y acetato de sodio.

- a) Razone cómo podría identificar cada una de las disoluciones midiendo su pH. (**Neutro, básico**)
- b) Justifique, sin hacer cálculos, cómo se modifica el pH de las disoluciones si se añade a cada matraz 1 L de agua. (El pH se reducirá)

Dato. pKa (ácido acético) = 4,8.

2015-Junio-Coincidentes Pregunta A2.- Justifique si cada una de las siguientes afirmaciones es verdadera o falsa:

- a) El ion HCO_3^- es una especie anfótera, mientras que NH_4^+ únicamente puede actuar como ácido. (V)
 - b) La sal procedente de un ácido débil y una base fuerte siempre tiene carácter básico. (V)
- c) El pH de una disolución obtenida al mezclar disoluciones de ácido clorhídrico e hidróxido de sodio siempre es neutro. (F)
 - d) Si una disolución A tiene pH = 3 y otra B tiene pOH = 6, [OH-] en B es 1000 veces la de A. (F)

Pregunta B5.- Se tienen cuatro disoluciones 0,1 M de HNO₃, HNO₂, NH₄Cl y KCl, respectivamente.

- a) Determine el pH de la disolución de HNO₃. (pH=1)
- b) Determine el pH de la disolución de HNO₂. (**pH= 2.19**)
- c) Ordene justificadamente las disoluciones del enunciado de menor a mayor pH. (HNO3< HNO2 < KCI)
- d) ¿Qué volumen de hidróxido de sodio 0,25 M hay que utilizar para neutralizar 25 mL de la disolución de HNO₃? **(V= 0,01 L)**

Datos. Ka $(HNO_2) = 4.5 \times 10^{-4}$; Kb $(NH_3) = 1.7 \times 10^{-5}$.

REDOX Y PILAS

2017-Junio-coincidentes Pregunta A2.- Dada la tabla adjunta de potenciales normales, conteste razonadamente:

a)	¿Reaccionan	una	disolución	acuosa	de	ácido	clorhídrico	con	estaño
metálico?	(Sí)								

b) Justifique qué catión puede comportarse como	oxidante y como reductor.
$(Sn/Sn^{2+}H^+/H_2)$	

Par redox	E ⁰ (V)
CIO ₄ ⁻ /CIO ₃ ⁻	1,19
Cu ²⁺ /Cu	0,34
SO ₄ ²⁻ /S ²⁻	0,15
Sn ⁴⁺ /Sn ²⁺	0,15
Sn ² */Sn	-0,14

- c) ¿Se produce reacción espontánea si se añade Sn a una disolución de Cu^{2+} ? (Sí)
- d) Ajuste una reacción espontánea de reducción de un catión por un anión. ($S^{2-} + 4H_2O + 4Cu^{2+} \rightarrow SO_4^{2-} + 8H^+ + 4Cu$)

Pregunta B5.- Cuando el ácido nítrico reacciona con cloro molecular se producen $HClO_3$, NO_2 y H_2O .

- a) Escriba y ajuste las semirreacciones de oxidación y reducción. Indique qué especie actúa como oxidante y cuál como reductor.
- b) Ajuste la reacción iónica global por el método del ion-electrón y la reacción molecular global. $(Cl_2 + 10HNO_3 \rightarrow 2HClO_3 + 10NO_2 + 4H_2O)$
- c) Calcule el volumen de ácido nítrico del 65% de riqueza en masa y densidad 1,29 g·mL⁻¹ que reacciona con 14,2 g de cloro molecular. (V=0,15 L HNO_3)

Datos. Masas atómicas: H = 1,0; N = 14,0; O = 16,0; Cl = 35,5.

2017-Junio Pregunta A5.- En la electrolisis de una disolución acuosa de cloruro de sodio se hace pasar corriente de 3,0 kA durante 2 horas. Mientras transcurre el proceso, se observa desprendimiento de hidrógeno y se obtiene cloro en medio básico.

- a) Escriba y ajuste las semirreacciones que se producen en el ánodo y en el cátodo y la reacción molecular global. Utilice el modelo de ajuste de ion-electrón. (2NaCl + 2H₂O \rightarrow Cl₂(g) + H₂(g) + 2NaOH)
 - b) A 25 C y 1 atm, ¿qué volumen de cloro se obtiene? (2735 L de Cl₂)
- c) ¿Qué masa de hidróxido de sodio se habrá formado en la cuba electrolítica en ese tiempo? (8954 g NaOH)

Datos. E_0 (V): $Na^+/Na = -2.71$; $Cl_2/Cl^- = 1.36$; $H_2O/H_2 = -0.83$.

Masas atómicas: H = 1; O = 16; Na = 23. F = 96485 C. R = 0,082 atm·L·mol⁻¹·K⁻¹.

Pregunta B3.- Para determinar la riqueza de un mineral de cobre se hace reaccionar 1 g del mineral con una disolución de ácido nítrico 0,59 M, consumiéndose 80 mL de la disolución de ácido.

- a) Escriba las semirreacciones que tienen lugar en el ánodo y en el cátodo e indique cuáles son las especies oxidante y reductora. (Cátodo, reducción: NO³-/NO₂ oxidante. Ánodo, oxidación: Cu/Cu²+ reductor.)
- b) Ajuste por el método de ion-electrón la reacción global que se produce. (Cu + $4HNO_3 \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$)
 - c) Calcule la riqueza en cobre del mineral. (74.93%)

Datos. E0 (V): $Cu^{2+}/Cu = 0.34$; $NO^{3-}/NO_2 = 0.78$. Masa atómica: Cu = 63.5.

2016-Septiembre Pregunta A5.- Se preparan dos cubetas electrolíticas conectadas en serie. La primera contiene 1 L de una disolución de nitrato de plata 0,5 M y la segunda 2 L de una disolución de sulfato de cobre(II) 0,2 M.

- a) Formule ambas sales y escriba las reacciones que se producen en el cátodo de ambas cubetas electrolíticas cuando se hace pasar una corriente eléctrica. ($Ag^+ + 1e \rightarrow Ag$, $Cu^{2+} + 2e \rightarrow Cu$)
- b) Sabiendo que en el cátodo de la primera se han depositado 3,0 g de plata, calcule los gramos de cobre que se depositarán en el cátodo de la segunda cubeta. (m= 0,88 g Cu)
- c) Calcule el tiempo que tardarán en depositarse dichas cantidades si la intensidad de corriente es de 2 A. (**t= 1341 s**)
- d) Transcurrido dicho tiempo, ¿cuántos moles de cada catión permanecen en disolución? (0,47mol Ag, 0,39mol Cu)

Datos. F = 96485 C. Masas atómicas: Cu = 63,5; Ag = 107,9.

Pregunta B1.- Ajuste las siguientes reacciones redox en sus formas iónica y molecular, especificando en cada caso cuáles son las semirreacciones de oxidación y reducción:

a)
$$KMnO_4 + HCl + SnCl_2 \rightarrow MnCl_2 + SnCl_4 + KCl + H_2O$$

 $(2KMnO_4 + 16HCl + 5SnCl_2 \rightarrow 2MnCl_2 + 5SnCl_4 + 2KCl + 8H_2O)$

b) $HNO_3 + H_2S \rightarrow S + NO + H_2O$ (2HNO₃ + 3H₂S \rightarrow 3S + 2NO + 4H₂O)

2016-Junio Pregunta A3.- Se dispone en el laboratorio de 250 mL de una disolución de Cd²⁺ de concentración 1 M y de dos barras metálicas, una de Ni y otra de Al.

- a) Justifique cuál de las dos barras deberá introducirse en la disolución de Cd²+ para obtener Cd metálico y formule las semireacciones que tienen lugar en el ánodo y en el cátodo. Ajuste la reacción redox global. (2Al + 3Cd²+ → 2Al³+ + 3Cd)
- b) En la disolución del enunciado, ¿cuántos gramos del metal se consumirán en la reacción total del Cd²+ ? (m= 4,5 g Al)

Datos. E_0 (V): $Cd^{2+}/Cd = -0.40$; $Ni^{2+}/Ni = -0.26$; $Al^{3+}/Al = -1.68$.

Masas atómicas: Al = 27; Ni = 59.

Pregunta B4.- Se hacen reaccionar KClO₃, CrCl₃ y KOH, produciéndose K₂CrO₄, KCl y H₂O.

- a) Formule las semirreacciones que tienen lugar, especificando cuál es el agente oxidante y cuál el reductor y ajuste la reacción iónica.
 - b) Ajuste la reacción molecular. (2 $CrCl_3 + 10KOH + KClO_3 \rightarrow 2K_2CrO_4 + 7KCl + 5H_2O$)
- c) Ajuste la semirreacción $Cr_2O_7^{2-}/Cr^{3+}$ en medio ácido y justifique si una disolución de $K_2Cr_2O_7$ en medio ácido es capaz de oxidar un anillo de oro. ($Cr_2O_7^{2-} + 14H^+ + 6e \rightarrow 2Cr^{3+} + 7H_2O$; no será capaz)

Datos.
$$E_0$$
 (V): $Au^{3+}/Au = 1,50$; $Cr2O7^{2-}/Cr^{3+} = 1,33$.

2016-Modelo Pregunta A4.- Se lleva a cabo la electrolisis de una disolución acuosa de bromuro de sodio 1 M, haciendo pasar una corriente de 1,5 A durante 90 minutos.

- a) Ajuste las semirreacciones que tienen lugar en el ánodo y en el cátodo. (Ánodo, oxidación: $40H^- \rightarrow O_2 + 2H_2O + 4e$; Cátodo, reducción: $2H^+ + 2e \rightarrow H_2$)
- b) Justifique, sin hacer cálculos, cuál es la relación entre los volúmenes de gases desprendidos en cada electrodo, si se miden en iguales condiciones de presión y temperatura. (Por estequiometría el Volumen H₂ será el doble que el de O₂)
- c) Calcule el volumen de gas desprendido en el cátodo, medido a 700 mm Hg y 30 C. **(V= 1,13 L H**₂)

```
Datos. E_0 (V): Br_2/Br^-=1,07; O_2/OH^-=0,40; Na^+/Na=-2,71. F=96485 C. R=0,082 atm·L·mo^{-1}·K<sup>-1</sup>
```

Pregunta B5.- En medio ácido clorhídrico, el clorato de potasio reacciona con cloruro de hierro(II) para dar cloruro de hierro(III) y cloruro de potasio, entre otros.

- a) Escriba y ajuste la reacción molecular global. (6FeCl₂ + KClO₃ + 6HCl → 6FeCl₃ + KCl + 3H₂O)
- b) Calcule la masa de agente oxidante sabiendo que para su reducción completa se emplean 40 mL de una disolución de cloruro de hierro(II) 2,5 M. (m= 2,04 g KClO₃)

QUÍMICA ORGÁNICA

2018-Modelo Pregunta A3.- Escriba la formula semidesarrollada y el nombre de dos posibles compuestos que tengan 4 carbonos y contengan en su estructura:

- a) Un grupo éter.
- b) Un grupo alcohol en un cicloalcano.
- c) Un grupo ester.
- d) Un grupo halógeno y un triple enlace en una cadena lineal.

Pregunta B3.- Escriba las reacciones que tendrían lugar entre but-3-en-1-ol y cada uno de los siguientes reactivos. Indique en cada caso de que tipo de reacción se trata y nombre los productos obtenidos.

- a) Ácido sulfúrico y calor. (CH₂=CH-CH₂-CH₂OH (H₂SO₄ + calor) \rightarrow CH₂=CH-CH=CH₂ + H2O Deshidratación alcoholes, eliminación. El producto es but-1,3-dieno)
- b) Ácido clorhídrico. (CH₂=CH-CH₂-CH₂OH + HCl → CH₃-CHCl-CH₂-CH₂OH Adición (hidrohalogenación), el producto es 3-clorobutan-1-ol Se forma mayoritariamente ese producto por la regla de Markovnikov.)
- c) $KMnO_4$ (oxidante). (CH₂=CH-CH₂-CH2OH (KMnO₄, oxidante fuerte) \rightarrow CH₂=CH-CH₂-COOH Oxidación fuerte. El producto es ácido but-3-enoico)
- d) Ácido etanoico en medio ácido. (CH₂=CH-CH₂-CH₂OH + CH₃-COOH → CH₃-COO-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃-COO-CH₃-COO-CH₂-CH₂-CH₃-COO-CH₃

2017-Septiembre-coincidentes Pregunta A2.- Dados los cuatro **compu**estos que se muestran en la tabla:

a)	Nombre	cada	uno	de ellos.	
----	--------	------	-----	-----------	--

НСООН	pK _a = 3,74
C ₆ H ₅ -COOH	pK _a = 4,20
CH₃-CH₂-COOH	pK _a = 4,88
C ₆ H ₅ -OH	pK _a = 9,88

d) Escriba la reacción entre C_6H_5 -COOH y C_6H_5 -OH. Nombre el producto orgánico formado e indique el tipo de reacción. (C_6H_5 -COOH + C_6H_5 -OH \rightarrow C_6H_5 -COO- C_6H_5 + H_2 O Condensación, esterificación. El producto es benzoato de fenilo.)

Pregunta B3.- Formule y nombre los siguientes compuestos orgánicos:

a) Dos alquenos, isómeros de cadena, de fórmula molecular C₄H₈. (CH₂=CH-CH₂-CH₃ but-1-eno; CH₂=C(CH₃)₂ metilpropeno)

- b) Una cetona lineal de fórmula molecular C₄H₆O. (CH≡CH₂-CO-CH₃ but-3-in-2-ona)
- c) Dos isómeros de función de fórmula molecular C_2H_6O . (CH $_3$ -O-CH $_3$ dimetiléter CH $_3$ -CH $_2$ OH etanol)
- d) El compuesto resultante de la reacción de 2,3-dimetilbut-1-eno con Br_2 . (CH₃-CH(CH₃)-C(CH₃)=CH₂+ $Br_2 \rightarrow CH_3$ -CH(CH₃)-C(CH₃)Br-CH₂Br Se forma 1,2-dibromo-2,3-dimetil-butano)
- **2017-Septiembre Pregunta A2.-** Formule las reacciones propuestas, indicando de qué tipo son, nombrando los productos orgánicos obtenidos e identificando al mayoritario.
- a) But-2-eno con hidrógeno en presencia de un catalizador. (CH₃-CH=CH-CH₃ + H₂ \rightarrow CH₃-CH₂-CH₂-CH₃ Adición (hidrogenación). El producto es butano.)
- b) Butanal con hidruro de litio y aluminio (condiciones reductoras). (CH₃-CH₂-CH₂-CH₀-CH₂-CH
- c) Butan-2-ol con ácido sulfúrico en caliente. (CH_3 - CH_2 -CHOH- CH_3 (H_2SO_4 + calor) \rightarrow CH_3 -CH- CH_3 + H_2O Eliminación (deshidratación de alcoholes), El producto mayoritario es but-2-eno. Se forma mayoritariamente ese producto por la regla de Saytzeff.)
- d) Ácido propanoico con etanol, en presencia de ácido sulfúrico. (CH₃-CH₂-COOH + CH₃-CH₂OH → CH₃-CH₂-COO-CH₂-CH₃ Condensación, esterificación. El producto propanoato de etilo.)

Pregunta B2.- Para el 2-metilbut-1-eno:

- a) Formule y nombre un isómero de posición. (CH₃-CH=C(CH₃)-CH₃ 2-metilbut-2-eno)
- b) Escriba la reacción de 2-metilbut-1-eno con cloruro de hidrógeno, nombrando los productos e indicando qué tipo de reacción es. $(CH_3-CH_2-C(CH_3)=CH_2+HCI \rightarrow CH_3-CH_2-C(CH_3)CI-CH_3$ Adición (hidrohalogenación), el proeucto es 2-cloro-2-metilbutano Se forma mayoritariamente ese producto por la regla de Markovnikov.)
- c) Escriba una reacción en la que se obtenga 2-metilbut-1-eno como producto mayoritario, a partir del reactivo necesario en presencia de ácido sulfúrico/calor. Nombre el reactivo. ¿De qué tipo de reacción se trata? (CH₃-CH₂-CH(CH₃)-CH₂OH (H₂SO₄ + calor) → CH₃-CH₂-C(CH₃)=CH₂ + H₂O Deshidratación alcoholes, eliminación. El reactivo es 2-metilbutan-1-ol.)

2017-Junio-coincidentes Pregunta A4.- Formule o nombre los siguientes compuestos orgánicos:

a) p-Cloroetilbenceno y 3-metilpent-3-enal. (3-metilpent-3-enal: CH₃-CH=C(CH₃)-CH₂-CHO)

- b) Propanoato de butilo y but-2-enamida. (Propanoato de butilo: CH₃-CH-COO-CH₂-CH₂-CH₂-CH₃ but-2-enamida: CH₃-CH-CO-NH₂)
- c) CH₃-CH=CH-CO-CH₃ y CH₃-CH₂-CHCl-COOH. **(CH₃-CH=CH-CO-CH₃: pent-3-en-2-ona CH₃-CH₂-CHCl-COOH: ácido 2-clorobutanoico)**
- d) $CH_3-CH_2-CH_2-NH_2$ y $CH_2=CH-CH_2-CH_2-C=CH$. (CH₃-CH₂-CH₂-NH₂: propan-1-amina CH₂-CH-CH₂-CH₂-C=CH: hex-1-en-5-ino)

Pregunta B2.- Formule y nombre:

- a) Los isómeros de fórmula C_4H_8 . (CH₃-CH₂-CH₂-CH₂-Dut-1-eno CH₃-CH₃
- b) Un isómero de función y uno de posición del butan-1-ol. (Isómero de función: CH₃-CH₂-O-CH₂-CH₃ (dietiléter) Isómero de posición: CH₃-CH₂-CHOH-CH₃ (butan-2-ol))
- c) Tres compuestos monofuncionales de fórmulas C_2H_4O , $C_2H_4O_2$ y CH_4O . (C_2H_4O : etanal (CH_3 -CHO), etenol (CH_2 -CHOH) $C_2H_4O_2$: ácido etanoico (CH_3 -COOH) CH_4O : metanol (CH_3 OH))
- **2017-Junio Pregunta A3.-** Formule las reacciones propuestas, escriba de qué tipo son y nombre los compuestos orgánicos empleados y los productos mayoritarios obtenidos:
- a) Aldehído lineal de 4 átomos de carbono en condiciones reductoras (LiAlH₄). (CH₃-CH₂-CH₂-CH₀ (en condiciones reductoras) → CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃-CH
- b) Ácido carboxílico de 3 átomos de carbono con un alcohol secundario de 3 átomos de carbono. (CH_3 - CH_2 - $COOH + CH_3$ -CHOH- $CH_3 \rightarrow CH_3$ - CH_2 -COO- $CH(CH_3)$ - $CH_3 + H_2O$ Condensación (esterificación), ácido propanoico + propan-2-ol \rightarrow propanoato de metiletilo)
- c) Alcohol secundario de 3 átomos de carbono en presencia de H_2SO_4 y calor. (CH₃-CHOH-CH₃ (en presencia H_2SO_4 y calor) \rightarrow CH₂-CH-CH₃ Eliminación (deshidratación de alcoholes), propan-2-ol \rightarrow propeno El producto es único, aunque apliquemos regla de Saytzeff mayoritario y minoritario son el mismo.)
- d) Alqueno de 3 átomos de carbono con HBr. (CH₂=CH-CH₃ + HBr → CH₃-CHBr-CH₃ Adición (hidrohalogenación), propeno + bromuro de hidrógeno → 2-bromopropano Se forma mayoritariamente ese producto por la regla de Markovnikov)

Pregunta B5.- Para los compuestos orgánicos $CH_2=C(CH_3)-CH_2-CH_3$, $CH_3-C(CH_3)=CH-CH_3$ y $CH_3-CH(CH_3)-CH=CH_2$:

- a) Nómbrelos e indique el tipo de isomería que presentan. (2-metilbut-1-eno, metilbut-2-eno, : 3-metilbut-1-eno Presentan isomería estructural, de posición)
- b) Razone cuál de los tres da lugar al 2-bromo-3-metilbutano como producto mayoritario de la reacción con HBr. Formule la reacción. Nombre el tipo de reacción. (CH_3 - $CH(CH_3)$ - $CH=CH_2$ + $HBr \rightarrow CH_3$ - $CH(CH_3)$ - $CHBr-CH_3$ Adición (hidrohalogenación), 3-metilbut-1-eno + bromuro de hidrógeno \rightarrow 2-bromo-3-metilbutano Se forma mayoritariamente ese producto por la regla de Markovnikov)
- c) Justifique cuál de ellos se obtendrá como producto mayoritario de la reacción de 3-metilbutan-2- ol con H_2SO_4 . Formule la reacción. Nombre el tipo de reacción. (CH_3 - $C(CH_3)$ -CHOH- CH_3 (en presencia H_2SO_4 y calor) \rightarrow CH_3 - $C(CH_3)$ -CH- CH_3 Eliminación (deshidratación de alcoholes), 3-metilbutan-2-ol \rightarrow 2-metilbut-2-eno. Se forma mayoritariamente ese producto por la regla de Saytzeff.)

2016-Septiembre Pregunta B3.- Para el compuesto 2,2,3-trimetilpentano:

- a) Escriba su fórmula semidesarrollada. (CH₃-C(CH₃)₂-CH(CH₃)-CH₂-CH₃)
- b) Escriba y ajuste su reacción de combustión. ($C_8H_{18} + 25/2 O_2 \rightarrow 8 CO_2 + 9 H_2O$)
- c) Formule y nombre dos compuestos de cadena abierta que sean isómeros de él. (CH₃-CH₂-C(CH₂-CH₃)-CH₂-CH₂-CH₃-CH₂-CH₃-CH₂-CH₃-CH₂-CH₃-CH