

QUÍMICA

2° BACHILLERATO Tema 8: Química Orgánica

www.tipsacademy.es

FORMULACIÓN ORGÁNICA

2018-Modelo Pregunta A3.- Escriba la formula semidesarrollada y el nombre de dos posibles compuestos que tengan 4 carbonos y contengan en su estructura:

- a) Un grupo éter.
- b) Un grupo alcohol en un cicloalcano.
- c) Un grupo ester.
- d) Un grupo halógeno y un triple enlace en una cadena lineal.

2018-Modelo Pregunta B3.- Escriba las reacciones que tendrían lugar entre but-3-en-1-ol y cada uno de los siguientes reactivos. Indique en cada caso de que tipo de reacción se trata y nombre los productos obtenidos.

- a) Ácido sulfúrico y calor. (CH₂=CH-CH₂-CH₂OH (H₂SO₄ + calor) \rightarrow CH₂=CH-CH=CH₂ + H2O Deshidratación alcoholes, eliminación. El producto es but-1,3-dieno)
- b) Ácido clorhídrico. (CH₂=CH-CH₂-CH₂OH + HCl \rightarrow CH₃-CHCl-CH₂-CH₂OH Adición (hidrohalogenación), el producto es 3-clorobutan-1-ol Se forma mayoritariamente ese producto por la regla de Markovnikov.)
- c) KMnO₄ (oxidante). (CH₂=CH-CH₂-CH2OH (KMnO₄, oxidante fuerte) –CH₂=CH-CH₂-COOH Oxidación fuerte. El producto es ácido but-3-enoico)
- d) Ácido etanoico en medio ácido. (CH₂=CH-CH₂-CH₂OH + CH₃-COOH —CH₃-COO-CH₂-CH₂-CH=CH₂ Condensación, esterificación. El producto es etanoato de but-3-enilo.)

2019-Julio Pregunta B3.- Formule y nombre los siguientes compuestos orgánicos:

- a) Dos alquenos, isómeros de cadena, de fórmula molecular C₄H₈. (CH₂=CH-CH₂-CH₃ but-1-eno; CH₂=C(CH₃)₂ metilpropeno)
- b) Una cetona lineal de fórmula molecular C₄H₅O. (CH€H₂-CO-CH₃ but-3-in-2-ona)
- c) Dos isómeros de función de fórmula molecular C₂H₆O. (CH₃-O-CH₃ dimetiléter CH₃-CH₂OH etanol)
- d) El compuesto resultante de la reacción de 2,3-dimetilbut-1-eno con Br₂. (CH₃-CH(CH₃)-C(CH₃)=CH₂ + Br₂-CH₃-CH(CH₃)-C(CH₃)Br-CH₂Br Se forma 1,2-dibromo-2,3-dimetil-butano)

2017-Septiembre Pregunta A2.- Formule las reacciones propuestas, indicando de qué tipo son, nombrando los productos orgánicos obtenidos e identificando al mayoritario.

a) But-2-eno con hidrógeno en presencia de un catalizador. (CH₃-CH₂-CH₂-CH₃-CH₂-CH₂-CH₃-CH₂-CH₃-CH₂-CH₃-

- b) Butanal con hidruro de litio y aluminio (condiciones reductoras). (CH₃-CH₂-CH₂-CH₀-CH₂-CH
- c) Butan-2-ol con ácido sulfúrico en caliente. (CH₃-CH₂-CHOH-CH₃ (H₂SO₄ + calor) —CH₃-CH=CH-CH₃ + H₂O Eliminación (deshidratación de alcoholes), El producto mayoritario es but-2-eno. Se forma mayoritariamente ese producto por la regla de Saytzeff.)
- d) Ácido propanoico con etanol, en presencia de ácido sulfúrico. (CH₃-CH₂-COOH + CH₃-CH₂OH -CH₃-CH₂-COO-CH₂-CH₃ Condensación, esterificación. El producto propanoato de etilo.)

2017-Septiembre Pregunta B2.- Para el 2-metilbut-1-eno:

- a) Formule y nombre un isómero de posición. (CH₃-CH=C(CH₃)-CH₃ 2-metilbut-2-eno)
- b) Escriba la reacción de 2-metilbut-1-eno con cloruro de hidrógeno, nombrando los productos e indicando qué tipo de reacción es. (CH₃-CH₂-C(CH₃)=CH₂ + HCl -CH₃-CH₂-C(CH₃)Cl-CH₃ Adición (hidrohalogenación), el proeucto es 2-cloro-2-metilbutano Se forma mayoritariamente ese producto por la regla de Markovnikov.)
- c) Escriba una reacción en la que se obtenga 2-metilbut-1-eno como producto mayoritario, a partir del reactivo necesario en presencia de ácido sulfúrico/calor. Nombre el reactivo. De qué tipo de reacción se trata? (CH₃-CH₂-CH(CH₃)-CH₂OH (H₂SO₄ + calor) —CH₃-CH₂-C(CH₃)=CH₂ + H₂O Deshidratación alcoholes, eliminación. El reactivo es 2-metilbutan-1-ol.)

2017-Junio-coincidentes Pregunta A4.- Formule o nombre los siguientes compuestos orgánicos:

- a) p-Cloroetilbenceno y 3-metilpent-3-enal. (3-metilpent-3-enal: CH₃-CH=C(CH₃)-CH₂-CHO)
- b) Propanoato de butilo y but-2-enamida. (Propanoato de butilo: CH₃-CH-COO-CH₂-CH₂-CH₃-C
- c) CH₃-CH=CH-CO-CH₃ y CH₃-CH₂-CHCl-COOH. (CH₃-CH=CH-CO-CH₃: pent-3-en-2-ona CH₃-CH₂-CHCl-COOH: ácido 2-clorobutanoico)
- d) $CH_3-CH_2-CH_2-NH_2$ y $CH_2=CH-CH_2-CECH$. ($CH_3-CH_2-CH_2-NH_2$: propan-1-amina $CH_2=CH-CH_2-CECH$: hex-1-en-5-ino)

2017-Junio-coincidentes Pregunta B2.- Formule y nombre:

- a) Los isómeros de fórmula C₄H₈. (CH₃-CH₂-CH₂-CH₂-Dut-1-eno CH₃-CH=CH-CH₃ but-2-eno CH₂-C(CH₃)-CH₃ 2-metilpropeno, ciclobutano, etilciclopropano)
- b) Un isómero de función y uno de posición del butan-1-ol. (Isómero de función: CH₃-CH₂-CH₂-CH₃ (dietiléter) Isómero de posición: CH₃-CH₂-CHOH-CH₃ (butan-2-ol))

c) Tres compuestos monofuncionales de fórmulas C_2H_4O , $C_2H_4O_2$ y CH_4O . (C_2H_4O : etanal (CH_3 -CHO), etenol (CH_2 -CHOH) $C_2H_4O_2$: ácido etanoico (CH_3 -COOH) CH_4O : metanol (CH_3 OH))

2017-Junio Pregunta A3.- Formule las reacciones propuestas, escriba de qué tipo son y nombre los compuestos orgánicos empleados y los productos mayoritarios obtenidos:

- a) Aldehído lineal de 4 átomos de carbono en condiciones reductoras (LiAlH₄). (CH₃-CH₂-CH₂-CH₀ (en condiciones reductoras) –CH₃-CH₂
- b) Ácido carboxílico de 3 átomos de carbono con un alcohol secundario de 3 átomos de carbono. (CH₃-CH₂-COOH + CH₃-CHOH-CH₃ -CH₃-CH₂-COO-CH(CH₃)-CH₃ + H₂O Condensación (esterificación), ácido propanoico + propan-2-ol -propanoato de metiletilo)
- c) Alcohol secundario de 3 átomos de carbono en presencia de H_2SO_4 y calor. (CH₃-CHOH-CH₃ (en presencia H_2SO_4 y calor) —CH₂=CH-CH₃ Eliminación (deshidratación de alcoholes), propan-2-ol \rightarrow propeno El producto es único, aunque apliquemos regla de Saytzeff mayoritario y minoritario son el mismo.)
- d) Alqueno de 3 átomos de carbono con HBr. ($CH_2=CH-CH_3+HBr-CH_3-CHBr-CH_$

2017-Junio Pregunta B5.- Para los compuestos orgánicos $CH_2=C(CH_3)-CH_2-CH_3$, $CH_3-C(CH_3)=CH-CH_3$ y $CH_3-CH(CH_3)-CH=CH_2$:

- a) Nómbrelos e indique el tipo de isomería que presentan. (2-metilbut-1-eno, metilbut-2-eno, : 3-metilbut-1-eno Presentan isomería estructural, de posición)
- b) Razone cuál de los tres da lugar al 2-bromo-3-metilbutano como producto mayoritario de la reacción con HBr. Formule la reacción. Nombre el tipo de reacción. (CH₃-CH(CH₃)-CH=CH₂ + HBr –CH₃-CH(CH₃)-CHBr-CH₃ Adición (hidrohalogenación), 3-metilbut-1-eno + bromuro de hidrógeno –2-bromo-3-metilbutano Se forma mayoritariamente ese producto por la regla de Markovnikov)
- c) Justifique cuál de ellos se obtendrá como producto mayoritario de la reacción de 3-metilbutan-2- ol con H₂SO₄. Formule la reacción. Nombre el tipo de reacción. (CH₃-C(CH₃)-CHOH-CH₃ (en presencia H₂SO₄ y calor) −€H₃-C(CH₃)=CH-CH₃ Eliminación (deshidratación de alcoholes), 3-metilbutan-2-ol → 2-metilbut-2-eno. Se forma mayoritariamente ese producto por la regla de Saytzeff.)

2016-Septiembre Pregunta B3.- Para el compuesto 2,2,3-trimetilpentano:

- a) Escriba su fórmula semidesarrollada. (CH₃-C(CH₃)₂-CH(CH₃)-CH₂-CH₃)
- b) Escriba y ajuste su reacción de combustión. (C₈H₁₈ + 25/2 O₂ -8 CO₂ + 9 H₂O)

c) Formule y nombre dos compuestos de cadena abierta que sean isómeros de él. (CH_2 - CH_2 - CH_2 - CH_2 - CH_3 - CH_2 - CH_3 - CH_2 - CH_3 - CH_2 - CH_3

